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Abstract

D0 brane (D-particle) and D1 brane actions possess �rst and second class constraints

that result in local � symmetry. The � symmetry of the D-particle and the D1 brane
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second class constraints into �rst class. Di�erent gauge �xings of these symmetries result

in di�erent presentations of these systems while a "unitary" gauge �xing of the new

�+ symmetry retrieves the original action with �� = � symmetry. For D1 brane our

extended phase space makes all constraints into �rst class in the case of vanishing world

sheet electric �eld (namely (0; 1) string).
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Introduction

An important ingredient in the study of D-branes[1] dynamics is their local fermionic

symmetry on the world-volume, the � symmetry. The history of this symmetry goes back

to the superparticle action[2] where it was identi�ed [3][4] and applied to the superstring[5].

It was used also in the study of super p-branes[6] in di�erent dimensions. The role of

the � symmetry was further emphasized in the study of the D-branes embedded in at

10D space-time in [7][8]. The symmetry is generated by 16 irreducible �rst class fermionic

constraints. These constraints are accompanied by another set of 16 second class fermionic

constraints which do not correspond to any local symmetry. The covariant separation of

the two types of constraints in the brane action was emphasized in [9][10] and enabled

the covariant quantization of the D0 and D1 brane.

It has been found di�cult to quantize covariantly the massless superparticle, as is

the situation also with the Green-Schwarz formulation of the superstring [5] since in both

systems �rst and second class constraints cannot be separated in a covariant manner. This

is a long lasting problem and many attempts have been made to solve it [11]-[12]. In the

massive superparticle action the � symmetry is explicitly broken. Its �rst class constraints

are replaced now by solvable second class constraints and the system can be quantized

covariantly by means of Dirac brackets since all its constraints are second class. Since

the massive superparticle can be quantized covariantly, one may be tempted to consider

the massless limit of the massive case as a substitute for the covariant quantization of the

massless superparticle. However, the Dirac brackets become singular in the p2 = m
2 ! 0

limit. The restoration of the broken � symmetry of the massive system in an extended

phase space [13][14] by adding extra fermionic degrees of freedom was considered in[15].

Another possibility to restore the � symmetry is to include a proper Wess-Zumino term

in the action, as is the case with the D0 brane [7]-[10]. This is physically more interesting,

but contains in addition to the �rst class constraints, that correspond to the restored

� symmetry, also second class constraints . When considering the massless limit, one

�nds the need to avoid these second class constraints since also here the Dirac brackets

become singular in the massless limit. The restoration of symmetry with no second class

constraints, gives the full advantages of working within a system with local symmetry
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in particular a covariant wave function can be formulated also in the massless limit[15].

For this purpose, it is usually useful to turn the second class constraints into �rst class.

This formulation o�ers a exibility to allow various gauge �xings which are physically

equivalent. At the same time, the newly introduced �rst class constraints generate a

gauge symmetry which may give more insight into the geometrical structure of the system

which is interesting in its own right.

Several other di�erent approaches to this issue share in common the idea of adding

extra dynamical degrees of freedom while extending the symmetry of the system in dif-

ferent manners. In the geometrical-superembedding approach, superbrane dynamics is

manifestly supersymmetric on the worldvolume as well as in target superspace[16] and

the auxiliary commuting spinors superpartners have twistor-like and Lorentz harmonics

properties. This approach, which has a wide range of applications in several physical sys-

tems, has been developed for super p-branes and D branes as well. Other treatments of

second class constraints include extended phase space variables in [17] and, more recently,

auxiliary commuting twistor-like spinor variables and tensorial central charge coordinates

were used in [18]. Introducing Liouville mode while solving the second class constraints

left a �nal action with only �rst class constraints in [19]. Other related approaches can

be found in[20]-[21].

In the �rst part of this paper we suggest a new symmetric system for the D-particle in

which the second class constraints are turned into �rst class in an extended phase space

which includes extra fermionic degrees of freedom. We de�ne a system that contains

��; ��, the original fermionic degrees of freedom of the D0 brane to which extra fermionic

degrees of freedom ��; �� are added ( ��; �� are Majorana-Weyl spinors while ��; �� are

only Majorana). The new system has, in addition to the original � = �� symmetry a new

local �+ symmetry. The system can be gauge �xed in many di�erent ways while one of

these gauge �xings ("unitary" gauge) retrieves the original D0 brane. The rest of the paper

presents, along the same lines, the D1 brane with an extended �� and �+ local symmetry.

We consider the case of a vanishing electric �eld in the Born-Infeld-Nambu-Goto action.
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Superparticle and D-particle

The N=1 massless superparticle action in d=10 space-time dimensions ([2]-[5]):

S =

Z
�f

�i

L(�)d� = �1

2

Z
�f

�i

d�
1

e
( _x� � i��+�

� _�+)
2 (1)

is invariant under the local � symmetry:

�x� = i��+����+ ; ��+ = ( _x� � i��+�
� _�+)���� ; �e = 4ie _��+�� (2)

x
� (� = 0; 1:::9) are space-time coordinates and �+ is a Majorana Weyl spinor with

positive (or negative) chirality, the spinor �� has the opposite chirality of �+ and e(�)

is the "einbein" of local reparametrization symmetry. The 32 � 32 �� matrices (� =

0; 1; 2::; 9) are built out of the conventional spin(8) matrices3 and satisfy f��;��g = 2���

and �
�� = diagf�+++ ::g

The system has 8 fermionic �rst class constraints and 8 fermionic second class con-

straints and thus its phase space has (32� 2� 8� 8) 8 independent fermionic degrees

of freedom.

Local � symmetry is explicitly broken in the N=1 massive superparticle action in d=10

dimensions [15]:

S =

Z
�f

�i

L(�)d� =
Z

�f

�i

d�f� 1

2e
( _x� � i ��+�

� _�+)
2 +

1

2
em

2g (3)

Here, using Eq.(2), one �nds �L = 2iem2 _��+�� 6= 0. All 16 constraints are second class

and its phase space has (32� 16 =)16 independent fermionic degrees of freedom.

One possible modi�cation by which the local �� symmetry can be restored is extending

its phase space to N=2 while adding an appropriate Wess-Zumino term.

�x� = i������ ; ��+ = ( _x� � i���� _�)���� ; �e = 4ie _��+�� (4)

L = � 1

2e
( _x� � i���� _�)2 +

1

2
em

2 + L2 (5)

3Our conventions are: �m = �
1


m
; m = 1; 2; ::9 ; �0 = �i�

2
I ; �11 = �
3
I ; f�11;��g = 0 ;

�� =

�
0 ��


� 0

�
; � = 0; 1; 2; :::9 �� = f�1; lg ; 

� = f1; lg ; l = 1; 2; ::9 
k fk =

1; 2; ::8g are 16� 16 spin(8) matrices ; 
9 = �k=8

k=1

k
; fm; 

ng = 2�m;n
; m; n = 1; 2::9 ��� +��� =


��� + 

��� = 2��� ; �; � = 0; 1; 2::9
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Here � = �+ + �� (� is a Majorana spinor and �+ and �� are Majorana-Weyl spinors of

opposite chirality) and ��� and L2 are to be determined below. From Eq.(4) one �nds:

�L =
2i

e
( _x� � i���� _�)2 _��+�� �

2i

e
( _x� � i���� _�)

_����(��+ + ���) + 2iem2 _��+�� + �L2 (6)

�L = 0 for a properly chosen L2. A possible solution of the form:

�L2 = A+��� +B���+ (7)

gives A+ = �2im _��+ ; B� = 2im _��� and ��� = em�� (up to a rescalingA+ ! A+=� ; B� !
B�� and ��� ! ����)

�L2 = im�( _���11
�)� im

d

dt
(����11

�) (8)

where

�11 = �
3 � I =

�
1 0

0 �1
�

; f�11
;��g = 0

(I is the 16� 16 identity matrix) Thus,

L(�) = �1

2
e
�1( _x� � i���� _�)2 +

1

2
em

2 � im���11 _� (9)

has a restored �� symmetry. The system has now not only 16 �rst class constraints

but also 16 second class constraints and the number of independent degrees of freedom

in phase space is the same as the N=1 massive superparticle (64 � 2 � 16 � 16 = 16).

Indeed, when compared to the massive N=1 superparticle action in Eq.(3), the added

negative chirality �� degrees of freedom ( 32 degrees of freedom in phase space; �� and

their canonical conjugate ��+) can be gauged away once the restored �� symmetry is

gauge �xed (�� = 0). One is left, after gauge �xing, back with L(�) of the massive N=1
superparticle in Eq.(3).

A very appealing point of view on L(�) of Eq.(9) is obtained when one starts with the

massless superparticle action in d=11 dimensions which is given by ([2]-[5]):

S =

Z
�f

�i

L(�)d� = �1

2

Z
�f

�i

d�e
�1( _xm̂ � i���m̂ _�)2 (10)

where xm̂ (m̂ = 0; 1:::10) are the space-time coordinates and �� = �+�+���(� = 1; 2:::32)

are the corresponding fermionic coordinates which can be regarded as two Majorana Weyl

spinors of opposite chiralities, if viewed as spinors in ten dimensions.
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When one of the space directions is compacti�ed [23] to a radius of R = m
�1 = Z

�1,

the d=11 massless superparticle action results [9][10] in the D0 brane action.

S =

Z
�f

�i

L(�)d� =
Z

�f

�i

d�f� 1

2e
( _x� � i���� _�)2 +

1

2
eZ

2 � iZ ���11 _� g

+ Z[x10(�f )� x10(�i)] (11)

Where p10 was set to p10 = m = Z , �1̂0 is de�ned as �11 and � = 0; 1:::9.

The D0 brane action in Eq.(11) is the same action obtained in Eq.(9) and its Wess-

Zumino term Z ���11 _� establishes the local �� symmetry, which is the original symmetry

of the d=11 massless superparticle action. Thus, instead of 32 second class constraints

as in the N=2, d=10 massive superparticle action, the D0 has 16 �rst class constraints

and 16 second class constraints which is the same number of constraints as the massless

N=2, d=10 superparticle and here too the 16 �rst class constraints result in �� symmetry.

An important di�erence between the D0 action and the massless superparticle is the fact

that in the D0 case the �rst and second class constraints can be separated in a covariant

manner[9][10], this cannot be done for the massless N=2 d=10 superparticle.

We would like to treat now the D0 system in a more symmetrical manner by turning

also its remaining 16 second class constraints into �rst class. The resulting system will

have in addition to the original �� symmetry also a �+ symmetry generated by the new

�rst class constraints. Among all possible di�erent gauge �xing of the new �+ symmetry,

one should also be able to retrieve the original D0 system, by appropriately gauge �xing

("unitary" gauge �xing) the extended symmetric system.

After implementing the �+ extended symmetry into the system, the number of inde-

pendent degrees of freedom should not change. Thus, one has to extend the phase space

of the new, symmetric system by adding extra fermionic degrees of freedom to account

for the increase of symmetry. In the following we de�ne and summarize the properties of

the �+; �� symmetric system. From Eq.(11)(ignoring the boundary term) or from:

S = �Z
Z

�f

�i

d�f
q
�( _x� � i���� _�)2 + i���11 _� g (12)

one �nds the constraints,

�T� = ��� + i(�� 6p)� + iZ(���11)� = 0 ; p
2 + Z

2 = 0 (13)
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where ��� is the momentum, canonical conjugate of �� (right handed derivatives are used

when taking a derivative with respect to _��).

The momentum is: p� = Zf _x��i���� _�p
�( _x��i���� _�)2

g ; the Hamiltonian is H0 = 0. Using the

Poisson brackets

[x�; p
�] = �

�

�
; [��; ���] = �

�

�
all others = 0 : (14)

one �nds:

[ �T�; �T�] = 2i(�0(6p + Z�11))�� (15)

and we have:

6p+ Z�11 =

�
Z �6p
6p �Z

�
and (6p+ Z�11)2 = (p2 + Z

2) � I (16)

(here, I is the 32� 32 identity matrix)

det[�0( 6p+ Z�11)] = (p2 + Z
2)16 = 0: (17)

In the 32�32 matrix �0(6p+Z�11), each of its 16�16 blocks has a non-zero determinant,

and �0(6p+ Z�11) has rank 16 . The �rst and second class constraints can be covariantly

separated by de�ning [9][10]:

�T1 = �T (6p+ Z�11)(1��11

2
) = ��� 6p� Z��+ + i��+(p

2 + Z
2) (18)

and �T2 = �T (1+�11

2
) = ��� + i��+ 6p+ iZ ���

as seen from the following Poisson bracket relations:

[ �T1�; �T1�] = �2i(p2 + Z
2)(�01 + �11

2
6p)�� ; [ �T2�; �T2�] = 2i(�01� �11

2
6p)��

[ �T1�; �T2�] = �2i(p2 + Z
2)(�01 + �11

2
)�� (19)

where we used:

[���; ����] = (
1� �11

2
)��: (20)
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The generator of � symmetry and reparametrization is given in terms of the parameters

�� and �p by:

G =
1

2
�p(p

2 + Z
2) + �T1�� (21)

As mentioned above, the D0 brane has a total of 16 independent fermionic degrees of

freedom in phase space ( 32� 2� (2� 16 + 16) ) as reected by the 16 �rst class and 16

second class fermionic constraints in Eq.(19).

In an extended phase space where the system is described by extra degrees of freedom,

second class constraints can be turned into �rst class[13][14]. One denotes the second class

constraints Poisson bracket by:

[ �T2�; �T2�] = 2i(�01� �11

2
6p)�� = V�!�V�� (22)

V�� constructs the BRST operator in the extended symmetric system and !� is used in

order to de�ne a linear combination of extra 32 fermionic degrees of freedom in phase

space. We have (up to similarity transformations of ! in the symplectic structure of

Eq.(22)):

V�� =

 
�01� �11

2
6p
!
��

; !�� = �2i

p2

 
(
1 + �11

2
)6p�0

!
��

(23)

We de�ne the linear combination:

���� = �1

2
���� + ~!���+� = �1

2
���� � i

1

2
(��+ 6p)� (24)

where we used

~!�� = �i1
2

 
�0(

1� �11

2
)6p
!
��

; !� ~!� =

 
1 + �11

2

!
��

(25)

�� and �+ are a canonical pair of Majorana-Weyl spinors representing extra 32 fermionic

degrees of freedom whose Poisson bracket is:

[����; �+�] =

 
1 + �11

2

!
��

(26)

The linear combination in Eq.(24) of the extra degrees of freedom ��� have the Poisson

bracket:

[����;
����] = �~!�� = i

1

2

 
�0(

1� �11

2
) 6p
!
��

(27)
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One de�nes now, in the extended phase space, the following constraints, which are �rst

class:

�T 0

��
= �T2� + ����!�V� ; [ �T 0

��
; �T 0

��
] = 0 (28)

Thus, the dynamics in the extended phase space are de�ned by the two opposite

chirality sets of constraints �T+; �T
0

�
and their Poisson bracket:

�T1 � �T+ = ��� 6p� Z��+ + i��+(p
2 + Z

2) ; �T 0

�
= ��� + i��+ 6p + iZ ��� � i��� + ��+ 6p : (29)

Using the extended phase space Poisson brackets in Eq.(20) and Eq.(26) one �nds the

Poisson brackets of two chiral multiplets of �rst class constraints :

[ �T+�; �T+�] = �2i(p2 + Z
2)

 
�0(

1 + �11

2
)6p
!
��

; [ �T 0

��
; �T 0

��
] = 0

[ �T+�; �T
0

��
] = �2i(p2 + Z

2)

 
�0(

1 + �11

2
)

!
��

(30)

The total extended phase space hamiltonian is:

HT = H0 +
1

2
�p(p

2 + Z
2) + �T+�� + �T 0

�
�+ ; H0 = �1

2
e(p2 + Z

2) (31)

The generator of �� and �+ gauge symmetries and reparametrization is:

G = �e�e +
�p

2
(p2 + Z

2) + f��� 6p� Z��+ + i��+(p
2 + Z

2)g��
+f��� + i��+ 6p+ iZ ��� � i��� + ��+ 6pg�+ (32)

and the phase space action is:

S =

Z
�f

�i

d� fp� _x� + �e _e+ ��+ _�� + ��� _�+ + ��� _�+

+
e

2
(p2 + Z

2)� �e�e �
1

2
�p(p

2 + Z
2)� �T+�� � �T 0

�
�+ g (33)

The �� and �+ transformations generated by the generator G in Eq.(32) are given by:

�x� = (����� + 2ip���+)�� + (i��+ + ��+)���+ ; �p� = 0

��+ = 6p�� + �+ ; ��� = �Z��
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���+ = �Zi��+ ; ���� = �i(p2 + Z
2)��� + i��+ 6p

��+ = �i�+ ; ���� = ��+ 6p (34)

The action in Eq.(33) is invariant under these transformations if supplemented also by:

��� = _�� ; ��+ = _�+ ; ��p = 4i(����+ � ��+�� + ��� 6p��)

as well as invariant under reparametrization

�x� = p��p ; �p� = 0 ; �e = �e ; ��e = 0

��e = _�e ; ��p = �e + _�p ; �p(�i) = �p(�f) = 0 (35)

In Eq.(33) the bosonic (�e; �p) Lagrange multipliers and the Majorana-Weyl (��; �+)

Lagrange multipliers are associated with the bosonic and fermionic �rst class constraints

�e = p
2 + Z

2 = 0; �T� = �T+ = 0.

One notices that in the new phase space action of Eq.(33) only the linear combination

�i���+��+ 6p of new fermionic degrees of freedom appears. The orthogonal combination does

not appear in the action and is thus decoupled from any dynamics of the system. This

"Batalin-Fradkin decoupling" (see refs. [13]-[15]) assures that the correct independent

degrees of freedom de�nes the extended symmetric system. Namely, we started with

(64�16�2�16 =) 16 fermionic degrees of freedom in phase space, 32 degrees of freedom

were added and the �+ symmetry was introduced. We have now (64+32�16�2�16�2 =
16+16) 16 independent degrees of freedom as in the original system while the other 16 are

the "Batalin-Fradkin decoupled" degrees of freedom. In the extended symmetry system,

in addition to the possible gauge �xing (e.g. [9][10]) that eliminates the �� degrees of

freedom by �xing the �� gauge, other gauge �xings are acceptable as well. Clearly, as

seen in Eq.(34), a properly chosen gauge �xing ( "unitary" gauge �xing) of the new �+

symmetry will eliminate the linear combination of the new fermionic degrees of freedom

�i��� + ��+ 6p. For example a possible unitary gauge �xing is

�� = 0 and � i��� + ��+ 6p = 0 (36)
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This results in the same gauge �xed system that was used in [9]. A di�erent, interesting,

gauge �xing that eliminates the old degrees of freedom and leaves only the new 16 degrees

of freedom is simply,

�� = 0 and �+ = 0 (37)

The gauge �xed D0 system is given in this gauge in terms of �i��� + ��+ 6p only. As in the

case of the unitary gauge in Eq.(36), the Poisson bracket matrix [ �T��; ���] between the

constraints �T+�; �T
0

��
and the gauge �xing conditions �� = ��; �+ = �+ is not singular

since p
2 + Z

2 = 0. Of course, other combinations of �� and �+ gauge �xings are also

possible.

An interesting set of constraints is de�ned by:

�T 0

��
= �T2� + ����!�V� = ��� + i��+ 6p+ iZ ��� � i��� + ��+ 6p (38)

�T 0

+� = �T+ + i2

 
p
2 + Z

2

p2

! 
��(
1 + �11

2
)6p
!
�

= ��� 6p� Z��+ + i��+(p
2 + Z

2) + ��+(p
2 + Z

2)� i��� 6p
 
p
2 + Z

2

p2

!

These constraints satisfy the following Poisson bracket relations:

[ �T 0

+�;
�T 0

+�] = �2i(Z
2

p2
)(p2 + Z

2)

 
�0(

1 + �11

2
)6p
!
��

;

[ �T 0

��
; �T 0

��
] = 0 ; [ �T 0

+�;
�T 0

��
] = 0 (39)

We note in the p
2 � Z

2 limit, �T 0

+� and �T 0

��
are functions of (�+; ��) and (�� �

i�� ; �+ � i�+) only. It is expected, in this limit, that the system behaves as the N=2

massless superparticle - a system with 16 independent fermionic degrees of freedom in its

phase space, as seen also directly from the action in Eq.(10). Indeed, one notes that not

only ��� and �+ appear only in the linear combinations ��� + i��+ 6p but now also ��� + i��+ 6p
is the only linear combination of ��� and �+ that appears in the constraints. Thus, after

taking into account the decoupling of their orthogonal linear combination and the fact

that the fermionic degrees of freedom in phase space are now constrained by 16 �rst

class constraints ( �T 0

��
) while ( �T 0

+�) are now second class only (since p
2 + Z

2 6= 0), one

�nds indeed in the p
2 � Z

2 limit only 16 independent fermionic degrees of freedom as

for the N=2 massless superparticle. Namely, 64 + 32 � 16 � 2 � 16 = 16 + 16 + 16
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where the last 16+16 fermionic degrees of freedom are decoupled in the same sense as the

"Batalin Fradkin decoupling" (do not appear in the constraints or in the Hamiltonian of

the extended system).

The path integral formulation[22] of the system in Eqs.(30-31) with �� and �+ sym-

metry which has only �rst class constraints is given by:

S =

Z
�f

�i

d� fp� _x� + ��+ _�� + ��� _�+ + ��� _�+ + ���+ _�� + ���� _�+ + �p
_�p

+~C _P + ~P _C + �~C+ _P� +
�~P+

_C� +
�~C� _P+ +

�~P�
_C+ �H0

+�p�+ �����+ + ���+�� �
�p

2
(p2 + Z

2)� �T+�� � �T��+

+
�~C+[��; �T+]C� +

�~C�[�+;
�T�]C+ � ~PP

� ~P+P� � ~P�P+ � 4 ~P��� 6pC� + 4Z ~P(���C+ � ��+C�) g (40)

Here, C� and ~P� are canonical pairs of bosonic ghosts and P� and ~C� are canonical

pairs of bosonic anti-ghosts, associated with the fermionic constraints T+ and T�. The

Majorana-Weyl ��+; ��� are the canonical conjugates of the Lagrange multipliers ��; �+.

The bosonic �p is the canonical conjugate of the Lagrange multiplier �p associated with

the constraint p
2 + Z

2 = 0 and �+ , �+ are gauge �xings. The fermionic ghost and

its canonical conjugate are denoted by C and ~P , and the canonical pairs of fermionic

anti-ghosts as P , ~C .

The last 3 lines in Eq.(40) are given by: �[	;
] where the BRST operator 
 is given

by:


 = P�p + �P+��� + �P���+ + �T+C� + �T�C+
+
C
2
(p2 + Z

2) + 2 ~P �C� 6pC� + 2Z ~P( �C�C+ � �C+C�) (41)

and the gauge �xing 	 is given by:

	 = � ~P�� �~P+�� � �~P��+ + ~C�+
�~C+�� +

�~C��+ (42)

The above ��, �+ symmetric D0 de�ned in the extended phase space (��; ��; �+; ��)

is physically equivalent to the ordinary D0 with �� symmetry of Eq.(11). This, as men-

tioned, is demonstrated by choosing the "unitary" gauge �xing �� in Eq.(36) that sets the

extended phase space variables ���+ i��+ 6p to zero. On the other hand the above symmetric
system accepts many di�erent gauge �xings �� giving di�erent presentations of the D0

brane ( for example Eq. (37) ).

11



D1 brane with �� and �+ extended symmetry

Following along similar lines we present now the extension of this derivation to the case

of a D1 brane. It results in a system with �� and �+ symmetry which will be discussed

below.

The action of the D1 brane consists of the Born-Infeld-Nambu-Goto term and the

Chern-Simons two form 
2 term [7]

S =

Z
L(�)d2� = �T

�Z
d
2
�

q
�det(G�� + F��) +

Z

2

�
(43)

where G�� is the supersymmetric induced world-volume metric and F�� is the supersym-

metric Born-Infeld �eld strength:

G�� = �m

�
��m ; �m

�
= @�x

m � ���m@�� ; �; � = 0; 1 ; m = 0; 1; 2::9 (44)

F01 = F01 � b01(�3) ; F�� = @�A� � @�A� ; (45)

b01(�k) = ����m�k
�
@0��

m

1 � @1��
m

0 +
1

2
( @0�(���

m
@1�)� @1�(���

m
@0�) )

�
(46)

where �A
�
; � = 1; 2; � � � ; 32 are two Majorana-Weyl spinors with the same chirality, and

�k are Pauli matrices acting on indices A = 1; 2. The Lagrangian can be rewritten as

L(�) = �T
�q

G
2
01 �G00G11 �F2

01 + b01(�1)

�
(47)

The canonical momenta for the world sheet gauge �eld is given by the electric �eld

E
�

E
0 =

@L
@ _A0

= 0 ; E
1 =

@L
@ _A1

=
TF01q

G2
01 �G00G11 � F2

01

(48)

The canonical momenta ��� and pm are de�ned for �� and x
m respectively

pm = ~pm � ���mTE@1� ; ~pm = T
G11�0m �G01�1mq
G2

01 �G00G11 � F2
01

�� = �� 6�1TE � ��~6p+ (���m@1�)(���mTE) ; TE = E
1
�3 + T�1 (49)

We will suppress the indices A = 1; 2 of �A
�
when it is easily recognized. From Eq.(47)

one �nds the fermionic constraints ��A

�

��� = ��� + (�� 6p)� � (���mTE)�(@1xm) + (���m@1�)(���mTE)� = 0 (50)
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which satisfy the Poisson bracket relations:

[���(�); ���(�
0)] = 2

�
(�0 6~p)�� � (�0 6�1TE)��

�
�(� � �

0) (51)

In addition to the fermionic constraints in Eq.(50) one �nds from Eq.(47) also the

bosonic �rst class constraints :

~p2 +G11(E
2
1 + T

2) = 0 ; ~pm�
m

1 = 0 (52)

The constraints in Eq.(50) can be separated covariantly into �rst class and second

class constraints [9], [10] :

�T1� =

�
��(6~p� 6�TE)(

1 + �3

2
)

�
�

; �T2� =

�
��(
1� �3

2
)

�
�

(53)

The Poisson bracket [T1�; T1�] vanishes on the constraints hyperplane.

These 16 �rst class constraints T1� generate the local � symmetry of the D1 brane.

On the other hand:

[ �T2�; �T2�] = 2(�0 6P��)���(� � �
0) (54)

where

Pm = ~pm + E
1�1m = pm + ���mTE@1� + E

1(@1xm � ���m@1�)

Since P
2 = ~p2 + 2E1(~p�1) + E

2
1G11 = �T 2

G11 on the constraints hyperplane, we

obtain a nonvanishing det[ �T2�; �T2�] (apart from the case G11 = 0) implying that �T2� are

16 second class constraints. The condition G11 6= 0 is essential for separating the �rst and

second class constraints and the covariant quantization of the D1 system. In Ref.[9] it has

been emphasized that in the static gauge (where x� = �
� for � = 0; 1) indeed G11 6= 0.

The implications of this fact on the ground state spectrum and on the relation to the

work of Ref.[7] on the type IIB fundamental string have been cleared there. Both Refs.[7]

and [9] discuss the properties of the static gauge and elucidate its physics content. Since

the static gauge is a natural gauge for D1, we follow this point of view.

We de�ne now a new system in an extended phase space that includes in addition

to the 64 fermionic degrees of freedom �
A

�
and �

A

�
extra fermionic 32 degrees of freedom

[13][14] that satisfy

[��A
�
(�); �B

�
(�0)] = �(� � �

0)�AB
�

��� (55)
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The constraints of the new system �T 0
�

A

(x; p; �; �; �; �) are obtained from the constraints

in Eq.(53) in a similar way the constraints in the extended phase space in Eq.(28) were

obtained for the Dparticle. Namely, �T 0A

1�(x; p; �; �; �; �) =
�TA

1�(x; p; �; �) is left unchanged

and does not depend on (�; �) whereas the other constraint TA

2� is modi�ed as

�T 0A

2�(x; p; �; �; �; �) =
�TA

2�(x; p; �; �)� ��A
�
+ (��B 6P )��BA�

(56)

which depends on (�; �) and satis�es the Poisson bracket relation4 :

[ �T 0

2�;
�T 0

2�] = �2E1
�(� � �

0)
�
2(�0�m)��(���m��@1�)� (���m)�(@1���m��)�

�

�2E1@�(� � �
0)

@�0
(���m)�(���m��)� (57)

In the case of E1 = 0 the new system has only �rst class constraints and local symme-

tries �1 and �2 generated by T1� and by T
0

2� respectively. The symmetric system phase

space is given by the coordinates �
A

�
(�); �A

�
(�); �A

�
(�) and ��B

�
(�) where the number of

independent fermionic degrees of freedom has not been changed. Namely, we started with

2� 32� 2 � 16 � 16 = 16 independent fermionic degrees of freedom in phase space and

in the extended phase space we have 3� 32� 2 � 32 = 16 + 16(BF) degrees of freedom

where the 16(BF) degrees of freedom are "Batalin Fradkin decoupled" [14] [15] leaving 16

independent fermionic degrees of freedom.

We note from Eq.(48) that setting E
1 = 0 means also that F01 = 0 which results in

the Lagrangian of Eq.(47) to be very similar to the Green-Schwarz (GS) string.

The GS string is described by the action [5]

S =

Z
L(�)d2� = �T

2

Z
d
2
�

p
hh

��
G�� +

Z
L2d

2
� (58)

L2 = �T���@�xm(��1�m@��1 � ��2�m@��
2)� T�

��(��1�m@��
1)(��2�m@��

2)

= �T (@0xm(���m�3@1�)� @1x
m(���m�3@0�))�

T

2
(���m�3@0�)(��

A�m@1�
A)

+
T

2
(���m�3@1�)(��

A�m@0�
A) (59)

4In deriving Eq.(57), the following relations for Majorana �i have been used (�0�
m
T�2)�(��3�m)� +

(�0�
m
T�2)�(��3�m)� = (�0�m)��(��3�

m
T�2) where T is a matrix in the internal space of the Majorana

spinors ( such as �� and TE ). Also: (��2�m)�(��3�
m
T )� = (��2�mT )�(��3�

m)�
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This can be compared to the b01(�k) of Eq.(46) which can be written also as:

b01(�k) = (@0x
m(���m�k@1�)� @1x

m(���m�k@0�)) +
1

2
(���m�k@0�)(��

A�m@1�
A)

�1

2
(���m�k@1�)(��

A�m@0�
A) (60)

Thus L2 = �Tb01(�3) compared to �Tb01(�1) in the Wess-Zumino term of the D1 brane.

Similarly, using the equation of motion for h�� one notices that the D1 action in Eq.(43)

with E1 = 0 (namely F�� = 0) is identical to the Green and Schwarz action when �3 is

replaced by �1 [10]. Since we are using the static gauge as a natural gauge for D1 [7],

the massless modes are projected out. This relation between the physics of the type IIB

fundamental string and the D1 system in the static gauge has been noted in [9].

We also note that the electric �eld E
1 is quantized and represents the number of

fundamental string bound to the D1 brane producing (n;m) string [24], [25]. Therefore

we have succeeded to extend the system where all the second class constraints are turned

into �rst class constraints at least for the case of the (0; 1) string, namely the genuine D1

brane without F1 provided the massless modes are projected out by using, for instance,

the static gauge.
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